
DRAKVUF Sandbox - Open-source,
self-hosted malware sandbox in hypervisor

Adam Kliś, Michał Leszczyński
Confidence

2022 Cracow

Adam Kliś

● Former Specialist @ CERT.PL
→ Malware analysis automation / DRAKVUF research

● Researcher @ STM Cyber
→ Research: finding 0-days in IoT and enterprise software
→ Development: new red teaming tools and techniques

contact@bonusplay.pl
Twitter: @BonusPlay3

$ whoami

2

$ whoami
Michał Leszczyński

● Former Expert @ CERT.PL
→ Malware analysis automation / DRAKVUF research

● Founder @ ITSEC R&D Company
→ Engineering: NFC Solutions, Blockchain
→ Advisory: IT Security

ml@icedev.pl
Twitter: @icedevml

3

End goal demo
Assumptions:

● VM: Original Windows 7
+ Original game off the shelf

● Host: Xen/Ubuntu

http://www.youtube.com/watch?v=4h9J6S1z08s

Introduction

Malware 101

7

malware malware malware

Malware 101

8

Malware 101

9

Malware 101

10

packer

malware
core

packer

malware
core

packer

malware
core

Malware 101

11

● different packers

● the same/similiar malware
core

● malware core => easy
identification

● … also easy data extraction

what we have what we need

packer

malware
core

Malware processing at CERT.PL

12

● malware unpacking

● extraction of some interesting stuff

Example:

13

Malware processing at CERT.PL

14

What is a memory dump?

15

● logical dump of the memory at given point of time

● metadata:
○ base address at which dump was made,
○ reason of the dump (e.g. malware made some interesting

API call)

● profit? unpacked malware (at least sometimes)

Dynamic unpacking - theory

16

● when to make a memory dump?

Dynamic unpacking - theory

17

● when to make a memory dump?

randomly?

Dynamic unpacking - theory

18

● when to make a memory dump?

Dynamic unpacking - theory

19

Dynamic unpacking - theory

20

Dynamic unpacking - theory

21

Dynamic unpacking - theory

22

● in order to have good memory dumps, you need
good heuristics

● good heuristics need good behavioral monitoring

● why can’t you just use an ordinary sandbox?
○ we do, but...

Malware monitoring
problems

Example #1 - trickbot (1c81272ffc)

24

Example #1 - trickbot (1c81272ffc)

● Well known trojan / stealer

● Packed x86/x64 binaries

● Process hollowing using direct system calls

Sample:
https://mwdb.cert.pl/sample/1c81272ffc28b29a82d8313bd74d1c6030c2af1ba4b165c44dc8ea6376679d9f

References:
https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/

https://www.cert.pl/en/news/single/detricking-trickbot-loader/
25

https://mwdb.cert.pl/sample/1c81272ffc28b29a82d8313bd74d1c6030c2af1ba4b165c44dc8ea6376679d9f
https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/
https://www.cert.pl/en/news/single/detricking-trickbot-loader/

Example #1 - trickbot (1c81272ffc)

26

Directly making syscalls - not visible on conventional
sandboxes

10002600 8B D4 mov edx, esp

10002602 0F 34 sysenter

10002604 C3 ret

References:
https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/

https://www.cyberbit.com/blog/endpoint-security/latest-trickbot-variant-has-new-tricks-up-its-sleeve/

Example #2 - remcos (60c07bac07)

27

Example #2 - remcos (60c07bac07)
● Remote Access Trojan

● Packed x86/x64 binaries

● Hollowing svchost.exe using WriteProcessMemory()

Sample:
https://mwdb.cert.pl/sample/60c07bac07c7e2f2f3e03817addb88b38b8fbcd893d4b41b5007d984e8ba1fc5

28

https://mwdb.cert.pl/sample/60c07bac07c7e2f2f3e03817addb88b38b8fbcd893d4b41b5007d984e8ba1fc5

Example #2 - remcos (60c07bac07)
This is how Cuckoo hooks ntdll.dll (for Windows 7 x86):

static int hook_api_jmp_direct(hook_t *h, unsigned char *from,

 unsigned char *to)

{

 // unconditional jump opcode

 *from = 0xe9;

 // store the relative address from this opcode to our hook function

 *(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

 return 0;

}

TLDR: replace first 5 bytes of the hooked function with a 0xE9 jump
29

Example #2 - remcos (60c07bac07)
This is how Cuckoo hooks ntdll.dll (for Windows 7 x86):

static int hook_api_jmp_direct(hook_t *h, unsigned char *from,

 unsigned char *to)

{

 // unconditional jump opcode

 *from = 0xe9;

 // store the relative address from this opcode to our hook function

 *(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

 return 0;

}

TLDR: replace first 5 bytes of the hooked function with a 0xE9 jump
30

Example #2 - remcos (60c07bac07)
This is how Cuckoo hooks ntdll.dll (for Windows 7 x86):

static int hook_api_jmp_direct(hook_t *h, unsigned char *from,

 unsigned char *to)

{

 // unconditional jump opcode

 *from = 0xe9;

 // store the relative address from this opcode to our hook function

 *(unsigned long *)(from + 1) = (unsigned char *) to - from - 5;

 return 0;

}

TLDR: replace first 5 bytes of the hooked function with a 0xE9 jump
31

Example #2 - remcos (60c07bac07)

32

… and this is how remcos unhooks:

manually unpacked by @nazywam - thx

Example #2 - remcos (60c07bac07)

33

… and this is how remcos unhooks:

manually unpacked by @nazywam - thx

binary-match first export

Example #2 - remcos (60c07bac07)

34

… and this is how remcos unhooks:

“for each export”

manually unpacked by @nazywam - thx

Example #2 - remcos (60c07bac07)

35

… and this is how remcos unhooks:

override first 5 bytes to
ensure we’re unhooked

manually unpacked by @nazywam - thx

Example #2 - remcos (60c07bac07)

36

… and this is how remcos unhooks:

override first 5 bytes to
ensure we’re unhooked

manually unpacked by @nazywam - thx

Unhooking

37

Of course you can implement anti(2n - 1)-unhooking...

Unhooking

38

Of course you can implement anti(2n - 1)-unhooking...

... and they would implement anti(2n)-unhooking …

Unhooking

39

Of course you can implement anti(2n - 1)-unhooking...

... and they would implement anti(2n)-unhooking …

(Valid for n ∈ Z+)

Example #3 - kronos (6a8419d81f)

40

Example #3 - kronos (6a8419d81f)

● Banking malware

● Packed x86/x64 binaries

● API hammering

Sample:
https://mwdb.cert.pl/sample/6a8419d81fb645c073439e284a988ab540cd514a933ce2b6ee4b776aa50b50ac

41

https://mwdb.cert.pl/sample/6a8419d81fb645c073439e284a988ab540cd514a933ce2b6ee4b776aa50b50ac

Example #3 - kronos (6a8419d81f)

API hammering, pretty long sequence of operations:

● manipulating registry keys
\\REGISTRY\\MACHINE\\Software\\Wow6432Node\\Microsoft\\Windows\\Curren

tVersion\\Uninstall\\occidentalconvertors

● creating directories
● etc.

42

Example #3 - kronos (6a8419d81f)

API hammering:

$ cat drakmon.log \

 | grep NtCreateKey \

 | grep occidentalconvertors \

 | wc -l

40484

43

Example #3 - kronos (6a8419d81f)
API hammering:

$ cat drakmon.log | grep NtCreateKey | grep occidentalconvertors | head -n1

{

 "Plugin": "regmon",

 "TimeStamp": "1596380139.796501",

 "ProcessName": "\\Device\\HarddiskVolume2\\Users\\janusz\\Desktop\\MALWAR.EXE",

 "UserName": "SessionID",

 "UserId": 1,

 "PID": 1584,

 "PPID": 804,

 "Method": "NtCreateKey",

 "Key":

"\\REGISTRY\\MACHINE\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Uninstall\\

occidentalconvertors"

}
44

Example #3 - kronos (6a8419d81f)
After uploading to cuckoo.cert.ee:

45

Example #3 - kronos (6a8419d81f)
Our old&rusty Cuckoo 1:

sie 02 17:08:08 rex python[9179]: 2020-08-02 17:08:08,536 [lib.cuckoo.core.guest]

INFO: Starting analysis on guest (id=m, ip=192.168.122.31)

sie 02 17:10:33 rex python[9179]: 2020-08-02 17:10:33,621 [lib.cuckoo.core.scheduler]

ERROR: Analysis failed: [Errno 10054] An existing connection was forcibly closed by

the remote host

sie 02 17:10:35 rex python[9179]: 2020-08-02 17:10:35,608 [lib.cuckoo.core.scheduler]

INFO: Task #132707: analysis procedure completed

(exact reason not known)

46

Let’s do it on our own

48

51

● user mode (problems already mentioned)

● kernel mode

● hypervisor

Let’s do it on our own

52

● user mode (problems already mentioned)

● kernel mode (already done by others)

● hypervisor

Let’s do it on our own

53

Let’s do it on our own

● user mode (problems already mentioned)

● kernel mode (already done by others)

● hypervisor

Virtual Machine
Introspection

What is VMI? (simplified)

55

What is VMI? (simplified)

56

$ vmi-process-list windows7-sp1

Process listing for VM windows7-sp1-x86 (id=7)

[4] System (struct addr:84aba980)

[220] smss.exe (struct addr:85a44020)

[300] csrss.exe (struct addr:85f67a68)

[336] wininit.exe (struct addr:8601e030)

DRAKVUF

What is DRAKVUF?

58

● blackbox binary analysis system

● very clunky “gdb/strace” for Virtual Machines

What is DRAKVUF?

59

$ drakvuf -d windows7-sp1 …

[SYSCALL] TIME:1571248115.605033 VCPU:1

CR3:0x56ca5000,"\Device\HarddiskVolume2\Windows\System32\WindowsPowerShell\

v1.0\powershell.exe" SessionID:1 ntoskrnl.exe!NtProtectVirtualMemory

Arguments: 5

 IN HANDLE ProcessHandle: 0xffffffffffffffff

 INOUT PVOID *BaseAddress: 0x13cd08

 INOUT PSIZE_T RegionSize: 0x13cd10

 IN WIN32_PROTECTION_MASK NewProtectWin32: 0x4

 OUT PULONG OldProtect: 0x13cfb0

[SYSCALL] TIME:1571248171.517430 VCPU:0 …

DRAKVUF’s hooks (simplified)

60

Default altp2m view during execution

DRAKVUF’s hooks (simplified)

61

“Normal view” - used only during single-step

DRAKVUF’s hooks (simplified)

62

Back to default altp2m view after single-step

Memory dumps
the “technical” part

Heuristics

64

Hook NtProtectVirtualMemory(process_handle, base_addr, ...):

if (process_handle == ~0ULL) {

 char buf[2];

 read_vm_memory(base_addr, buf, 2);

 if (buf[0] == 'M' && buf[1] == 'Z') {

 dump_memory(base_addr, "possible binary detected");

 }

}

Heuristics
Hook NtFreeVirtualMemory(process_handle, base_addr, ...):

if (process_handle == ~0ULL) {

 if (page_table_check_rwx(base_addr)) {

 dump_memory(base_addr, "free called on RWX memory");

 }

}

65

Memory dumps

66

How to map a single pointer into a corresponding
memory region?

dump_memory(mem_base_address, "possible binary detected");

→ Look inside Virtual Address Descriptors.

Memory dumps

67

VAD - Virtual Address Descriptor

[1] dump.mem 18:15:32> vad(eprocess=0xfa8002992060)

 VAD lev start end com type exe protect

 -------------- --- --------------- ------------- ----- ------- ------ --------------------

 0xfa80020076d0 8 0x7fef4020000 0x7fef405ffff 3 Mapped Exe EXECUTE_WRITECOPY

C:\Windows\System32\tapi32.dll

 0xfa80016d6d80 6 0x7fef4060000 0x7fef4097fff 2 Mapped Exe EXECUTE_WRITECOPY

C:\Windows\System32\WinSCard.dll

 …
 0xfa80016cbc40 6 0x7fefd020000 0x7fefd036fff 2 Mapped Exe EXECUTE_WRITECOPY

C:\Windows\System32\cryptsp.dll

 0xfa8003022a00 7 0x7fefd680000 0x7fefd68efff 2 Mapped Exe EXECUTE_WRITECOPY

C:\Windows\System32\cryptbase.dll

Memory dumps

68

What if we don’t have any pointer provided as an
argument?

E.g. NtTerminateProcess is not memory-related but it’s
still interesting to know the caller.

Memory dumps

69

What if we don’t have any pointer provided as an
argument?

E.g. NtTerminateProcess is not memory-related but it’s
still interesting to know the caller.

→ Perform stack walk.

Memory dumps

70

Known: current CPU context inside syscall
Unknown: 64 bit stack, 32 bit stack (SYSWOW64)

64 bit: _KTHREAD->TrapFrame->Rsp

Memory dumps

71

Known: current CPU context inside syscall
Unknown: 64 bit stack, 32 bit stack (SYSWOW64)

64 bit: _KTHREAD->TrapFrame->Rsp
32 bit: (WOW_CONTEXT*)(_KTHREAD->Teb->TlsSlots[1] + 4)->Esp/Ebp
 ^^^^^^^^^^^^^^^

 ??? but why ???

Memory dumps

72

Stack unwinding?

for (int i = 0; i < 500; i++) {

 addr_t ptr = *(rsp+i);

 if (looks_legit(ptr))

 add_stack_entry(ptr);

}

Memory dumps

73

Stack unwinding?

for (int i = 0; i < 500; i++) {

 addr_t ptr = *(rsp+i);

 if (looks_legit(ptr))

 add_stack_entry(ptr);

}

// TODO: fix 😅

Usermode hooking

Usermode hooking

75

But why?

● hooks on syscalls are too low-level for us

● there are WinAPI functions that are not doing any
syscalls at all

● usermode calls needed for behavioral analysis

DRAKVUF Demo #2:
Crypto API
Assumptions:

● VM: Original Windows 7
+ Brand-new CLion

● Magic program on the host

http://www.youtube.com/watch?v=7UcgRZ5GhpQ

Usermode hooking

78

Which syscalls are issued when a new DLL is loaded?

Usermode hooking

79

Which syscalls are issued when a new DLL is loaded?

Closest call: NtMapViewOfSection / NtProtectVirtualMemory

Usermode hooking

80

Which syscalls are issued when a new DLL is loaded?

Closest call: NtMapViewOfSection / NtProtectVirtualMemory

DLLs are loaded…
But they don’t exist in the physical memory (yet).

Usermode hooking

DRAKVUF can’t add breakpoint on a memory which is
not yet mapped :(

So…

Usermode hooking
Inject a page fault through VMX from the Xen hypervisor level:

Thanks BitDefender! :)

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory
3. Not readable? Page fault

the export directory

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory
3. Not readable? Page fault

the export directory
4. Find out the RVA of export

Usermode hooking
How to reach the interesting DLL export?

1. Parse the PE header
2. Find image export directory
3. Not readable? Page fault

the export directory
4. Find out the RVA of export
5. The first instruction of

the exported function is not
accessible? Page fault

Usermode hooking

What if the DLL would be (purposely?) corrupted and
the pointer to IMAGE_EXPORT_DIRECTORY would be
invalid?

Usermode hooking

What if the DLL would be (purposely?) corrupted and
the pointer to IMAGE_EXPORT_DIRECTORY would be
invalid?

Our injected page fault would crash the whole
Windows system.

Usermode hooking

What if the DLL would be (purposely?) corrupted and
the pointer to IMAGE_EXPORT_DIRECTORY would be
invalid?

Our injected page fault would crash the whole
Windows system.

Let’s hook KiSystemServiceHandler (“BSOD handler”)
and pretend that nothing has happened.

Usermode hooking
Hook the kernel’s exception handler:

Usermode hooking
Hook the kernel’s exception handler:

Usermode hooking

93

Malware could attempt to override it’s own WinAPI function

● DLLs are shared between processes, Copy On Write occurs when
they are overridden

● solution: hook MiCopyOnWrite

● rewrite hooks to the new physical page

iexplore.exe - the best test program

94

iexplore.exe - overriding it’s own DLLs

95

regular vs internet explorer

96

DLLs overridden by IE:

● comdlg32.dll

● ole32.dll

● oleaut32.dll

● user32.dll

● comctl32.dll

iexplore.exe - overriding it’s own DLLs

http://www.youtube.com/watch?v=9h_BLQkZwsk

Intel Processor Trace
(work in progress)

15:22 <andyhhp__> oh wow - we've got Cert.pl implementing a VM feature

which we couldn't even perusade Intel to do

15:22 <andyhhp__> this is going to be interesting

99

#xen-devel

100

Intel Processor Trace

105

IPT
disassembly

IPT
disassembly

DRAKVUF
tracing

E
xe

cu
ti

on

DRAKVUF Sandbox

110

Wrapper for DRAKVUF Engine with:

● web interface

● easy installation

● sample queueing

● … much more coming soon!

DRAKVUF Sandbox

112

113

Fully open-source and free ;)

GitHub project

114

● magical box that tells
you if your email
attachment is a
malware

DRAKVUF IS NOT

115

● magical box that tells
you if your email
attachment is a
malware

DRAKVUF IS NOT DRAKVUF IS

● sandbox which
provides crucial
information for
malware analyst

Summary

GitHub

117

● LibVMI
https://github.com/libvmi/libvmi

● DRAKVUF
https://github.com/tklengyel/drakvuf

● DRAKVUF Sandbox
https://github.com/CERT-Polska/drakvuf-sandbox

https://github.com/libvmi/libvmi
https://github.com/tklengyel/drakvuf
https://github.com/CERT-Polska/drakvuf-sandbox

Kudos

118

● CERT.PL Reverse Engineers - nazywam, psrok1, msm
→ for many important remarks and hints about malware monitoring

● chivay, konstantyc
→ co-development of DRAKVUF/DRAKVUF Sandbox

Kudos

119

● Maciej “mak” Kotowicz
→ for providing many good heurstics for memory dumping
(and some hints about them)

● Tamas K. Lengyel
→ a lots of helpful remarks during our research
→ creator/maintainer of DRAKVUF project na GitHub

● Mathieu (Wenzel) Tarral
→ libvmi maintainer
→ gathering VMI community together

Thank you!

Slides:
https://icedev.pl/confidence22

